Problems for AIEEE and WBJEE

1. Show that $\mu=1$ if $\cot ^{-1}(\sqrt{\cos \alpha})+\tan ^{-1}(\sqrt{\cos \alpha})=\mu$
2. Let R be a relation on $\mathbb{\Phi}$ given by $a R b$ iff $a=2^{k} b$ for some integer k , show that R is an equivalence relation.
3. If $a^{2}+b^{2}+c^{2}=-2$, and $f(x)=\left|\begin{array}{ccc}1+a^{2} x & \left(1+b^{2}\right) x & \left(1+c^{2}\right) x \\ \left(1+a^{2}\right) x & 1+b^{2} x & \left(1+c^{2}\right) x \\ \left(1+a^{2}\right) x & \left(1+a^{2}\right) x & 1+c^{2} x\end{array}\right|$, show that $\mathrm{f}(\mathrm{x})$ is a polynomial of degree 2 .
4. Find the points on the curve $y^{3}+3 x^{2}=12 y$, where the tangent is vertical.
5. Let x_{1} and x_{2} be the solutions of the equation $\sin ^{-1}\left(x^{2}-3 x+\frac{5}{2}\right)=\frac{\pi}{6}$. then find the value of . $x_{1}^{2}+x_{2}^{2}$.
6. If $f(x)$ is a function such that $f^{\prime}(x)+f(x)=0$ and $g(x)=f^{2}(x)+f^{\prime 2}(x)$ and $g(3)=3$ find $g(8)$.
7. Show that the function $f(x)=x / 2+2 / x$ has a local minimum at $\mathrm{x}=2$.
8. If the curves $x^{2}=9 A(9-y)$ and $x^{2}=A(y+1)$ intersect orthogonally, then show that $A=4$.
9. Find the maximum value of $\frac{1}{4 x^{2}+2 x+1}$.
10. If $\cot \left(\cos ^{-1} x\right)=\sec \left\{\tan ^{-1}\left(\frac{a}{\sqrt{b^{2}-a^{2}}}\right)\right\}$, then show that $x=\frac{b}{\sqrt{2 b^{2}-a^{2}}}$.
11. Find the set of points where the function $f(x)=\frac{x}{1+|x|}$ is differentiable.
12. Find the equation of the tangent to the curve at the point where it crosses the y-axis.

$$
y=b e^{-\frac{x}{a}}
$$

13. If $y^{x} \cdot x^{y}=1$, find $\frac{d y}{d x}$.
14. If $y=\frac{1}{1+x^{m-n}}+\frac{1}{1+x^{n-m}}$, find the value of $\frac{d y}{d x}$.
15. Find the value of $\tan \left\{\frac{\pi}{4}+\frac{1}{2} \cos ^{-1}\left(\frac{a}{b}\right)\right\}+\tan \left\{\frac{\pi}{4}-\frac{1}{2} \cos ^{-1}\left(\frac{a}{b}\right)\right\}$.
16. Let $A=\left[\begin{array}{ccc}5 & 5 \alpha & \alpha \\ 0 & \alpha & 3 \alpha \\ 0 & 0 & 5\end{array}\right]$. If $\left|A^{2}\right|=25$, then find $|\alpha|$.
17. If $f(x)=x^{n}$, find $f(1)-\frac{f^{\prime}(1)}{1!}+\frac{f^{\prime \prime}(1)}{2!}-\frac{f^{\prime \prime \prime}(1)}{3!}+\ldots \ldots \ldots \ldots .+(-1)^{n} \frac{f^{(n)}(1)}{n!}$.

Author-Vinod Singh

Education: M.Sc Pure Mathematics'09,(Calcutta University) First Class.
B.Sc Mathematics Honours'07,(St. Xavier's kolkata) First Class.

Special interest in Algebra, Algebraic and Analytical Number Theory,

Cryptography, Algebraic Topology and Geometry.
 http://kolkatamaths.yolasite.com
 http://facebook.com/kolkatamaths
 Best of luck!
 (-)

Call us on $+91-9038126497$
Mail-maths.kolkata@gmail.com/maths.vinu@gmail.com No part of this publication may be reproduced, stored or transmitted in any form or by any means - electronic, mechanical, photocopying, recording or otherwise - without written permission from the Author Tags: MCQ, Short, answer, type, question, solved, problems, IIT, AIEEE, WBJEE, relation, functions, derivative, matrices, determinants, trigonometry, inverse, circular Co-ordinate, geometry, two-dimension, tangent, normal

