Solved IIT JEE Mathematics 2011 Paper-1
 SECTION - I (Total Marks : 21)
 (Single Correct Answer Type)

This section contains 7 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

1. A straight line L through the point $(3,-2)$ is inclined at an angle 60° to the line $\sqrt{3} x+y=1$. If L also intersects the x -axis, then the equation of L is
(A) $\sqrt{3} x+y+2-3 \sqrt{3}=0$
(B) $-\sqrt{3} x+y+2+3 \sqrt{3}=0$
(C) $\sqrt{3} y-x+3+2 \sqrt{3}=0$
(D) $\sqrt{3} y+x-3+2 \sqrt{3}=0$

Equation of the required line is $y=m x-3 m-2$, where m is the slope. According to the problem $\tan 60^{\circ}=\left|\frac{m+\sqrt{3}}{1-m \sqrt{3}}\right|$, solving we get $m=\sqrt{3}, m \neq 0$ as the required line intersect the x-axis . Hence Ans: (B).
2. Let $\left(x_{0}, y_{0}\right)$ be solution of the following equations $(2 x)^{\ln 2}=(3 y)^{\ln 3}$ and $3^{\ln x}=2^{\ln y}$. Then x_{0} is
(A) $1 / 6$ (B) $1 / 3$
(C) $1 / 2$
(D) 6

The first equation can be written as $\ln 2 \ln (2 x)=\ln 3 \ln (3 y)$ or $\ln 2(\ln 2+\ln x)=\ln 3(\ln 3+\ln y)$ and the second one as $\ln x \ln 3=\ln y \ln 2$ Therefore $\ln y=\frac{\ln x \ln 3}{\ln 2}$ substituting in above and solving we get $x=\frac{1}{2}$. Ans: (C).
3. The value of $\int_{\sqrt{\ln 2}}^{\sqrt{\ln 3}} \frac{x \sin x^{2}}{\sin x^{2}+\sin \left(\ln 6-x^{2}\right)} d x$ is
(A) $\frac{1}{4} \ln \frac{3}{2}$
(B) $\frac{1}{2} \ln \frac{3}{2}$
(C) $\ln \frac{3}{2}$
(D) $\frac{1}{6} \ln \frac{3}{2}$
let $I=\int_{\sqrt{\ln 2}}^{\sqrt{\ln 3}} \frac{x \sin x^{2}}{\sin x^{2}+\sin \left(\ln 6-x^{2}\right)} d x$ and put $\ln 6-x^{2}=t^{2}$, this will give
$I=-\int_{\sqrt{\ln 3}}^{\sqrt{\ln 2}} \frac{t \sin \left(\ln 6-t^{2}\right)}{\sin \left(\ln 6-t^{2}\right)+\sin t^{2}} d t=\int_{\sqrt{\ln 2}}^{\sqrt{\ln 3}} \frac{t \sin \left(\ln 6-t^{2}\right)}{\sin \left(\ln 6-t^{2}\right)+\sin t^{2}} d t$, thus $I+I=\int_{\sqrt{\ln 2}}^{\sqrt{\ln 3}} t d t$
hence $\mathrm{I}=\frac{1}{4} \ln \frac{3}{2}$ Ans (A).
4. Let $a=\hat{i}+\hat{j}+\hat{k}, b=\hat{i}-\hat{j}+\hat{k}$ and $c=\hat{i}-\hat{j}-\hat{k}$ be three vectors. A vector v in the plane of a and b, whose projection on v is $\frac{1}{\sqrt{3}}$, is given by
(A) $\hat{i}-3 \hat{j}+3 \hat{k}$
(B) $-3 \hat{i}-3 \hat{j}-\hat{k}$
(C) $3 \hat{i}-\hat{j}+3 \hat{k}$
(D) $\hat{i}+3 \hat{j}-3 \hat{k}$

Ans: (C).
5. Let $\mathrm{P}=\{\theta: \sin \theta-\cos \theta=\sqrt{2} \cos \theta\}$ and $\mathrm{Q}=\{\theta: \sin \theta+\cos \theta=\sqrt{2} \sin \theta\}$ be two sets. Then
(A) $P \subset Q$ and $Q-P \neq \phi$ (B) $\mathrm{Q} \not \subset \mathrm{P}$
(C) $\mathrm{P} \not \subset \mathrm{Q}(\mathrm{D}) \mathrm{P}=\mathrm{Q}$
$P=\{\theta: \sin \theta-\cos \theta=\sqrt{2} \cos \theta\}=\{\theta: \sin \theta=\cos \theta+\sqrt{2} \cos \theta\}$
$=\{\theta: \sin \theta=(1+\sqrt{2}) \cos \theta\}=\{\theta: \tan \theta=(1+\sqrt{2})\}$
$Q=\{\theta: \sin \theta+\cos \theta=\sqrt{2} \sin \theta\}=\{\theta: \cos \theta=\sqrt{2} \sin \theta-\sin \theta\}$
$=\{\theta: \cos \theta=(\sqrt{2}-1) \sin \theta\}=\left\{\theta: \tan \theta=\frac{1}{(\sqrt{2}-1)}\right\}=\{\theta: \tan \theta=\sqrt{2}+1\}$ Thus $\mathrm{P}=\mathrm{Q}$
Ans: (D).
6. Let α and β be the roots of $x^{2}-6 x-2=0$, with $\alpha>\beta$. If $a_{n}=\alpha^{n}-\beta^{n}$ for $n \geq 1$, then the value of $\frac{a_{10}-2 a_{8}}{2 a_{9}}$ is
(A) 1 (B) 2
(C) 3
(D) 4
$a_{n+1}=\alpha^{n+1}-\beta^{n+1}$
or, $a_{n+1}=\alpha^{n} \alpha-\beta^{n} \alpha+\beta^{n} \alpha+\alpha^{n} \beta-\alpha^{n} \beta-\beta^{n} \beta$
or, $a_{n+1}=\left(\alpha^{n}-\beta^{n}\right) \alpha+\beta^{n} \alpha+\left(\alpha^{n}-\beta^{n}\right) \beta-\alpha^{n} \beta$
or, $a_{n+1}=(\alpha+\beta)\left(\alpha^{n}-\beta^{n}\right)-\alpha \beta\left(\alpha^{n-1}-\beta^{n-1}\right)$
or, $a_{n+1}=(\alpha+\beta) a_{n}-\alpha \beta a_{n-1}$
or, $a_{n+1}=6 a_{n}+2 a_{n-1}$
therefore, $a_{10}=6 a_{9}+2 a_{8}-2 a_{8}=6 a_{9}$
it follows required value is 3 Ans (C).
7. Let the straight line $x=b$ divides the area enclosed by $y=(1-x)^{2}, y=0$ and $x=0$ into two parts $R_{1}(0 \leq x \leq b)$ and $R_{2}(b \leq x \leq 1)$ such $R_{1}-R_{2}=\frac{1}{4}$. Then b equals (A) $3 / 4$ (B) $1 / 2$ (C) $1 / 3$ (D) $1 / 4$
$\int_{0}^{b}(1-x)^{2} d x-\int_{b}^{1}(1-x)^{2}=\frac{1}{4} \Rightarrow b=\frac{1}{2}$ Ans (B).

SECTION - II (Total Marks : 16)

(Multiple Correct Answers Type)
This section contains $\mathbf{4}$ multiple choice questions. Each question has four choices
(A), (B), (C) and (D) out ofwhich ONE or MORE may be correct.
8. Let the eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ be reciprocal to that of the ellipse $x^{2}+4 y^{2}=4$. If the hyperbola passes through a focus of the ellipse, then
(A) the equation of the hyperbola is $\frac{x^{2}}{3}-\frac{y^{2}}{2}=1$
(B) a focus of the hyperbola is $(2,0)$
(C) the eccentricity of the hyperbola is $\sqrt{\frac{5}{3}}$
(D) the equation of the hyperbola is $x^{2}-3 y^{2}=3$

Eccentricity of the ellipse $e=\sqrt{3} / 2$ and focus is $(\pm \sqrt{3}, 0)$. Eccentricity of the hyperbola $e_{h}=\sqrt{1+\frac{b^{2}}{a^{2}}}$ According to the problem $\sqrt{1+\frac{b^{2}}{a^{2}}}=\frac{2}{\sqrt{3}}$ which gives $3 b^{2}=a^{2}$, again the hyperbola passes through $(\pm \sqrt{3}, 0)$ therefore $a^{2}=3$ hence $b^{2}=1$ thus the equation of the hyperbola is $\frac{x^{2}}{3}-\frac{y^{2}}{1}=1 \Rightarrow x^{2}-3 y^{2}=3$, clearly the focus is $(2,0)$ Ans: (B) and (D).
9. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a function such that $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y}), \forall x, y \in R$. If $\mathrm{f}(\mathrm{x})$ is differentiable at $x=0$, then
(A) $f(x)$ is differentiable only in a finite interval containing zero
(B) $\mathrm{f}(\mathrm{x})$ is continuous $\forall x \in R$
(C) $\mathrm{f}^{\mathrm{f}}(\mathrm{x})$ is constant $\forall x \in R$
(D) $f(x)$ is differentiable except at finitely many points

Ans: (B) and (C) taking $\mathrm{x}=\mathrm{y}=0$ we see that $\mathrm{f}(0)=0$. assume $\mathrm{f}^{\prime}(0)=\mathrm{t}$, t is real
Now $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{f(h)}{h}=f^{\prime}(0)=t$
Therefore $f(x)=t x+c$, since $\mathrm{f}(0)=0$ it follows that $f(x)=t x$, it now follows that the function is everywhere continuous and differentiable.
10. Let M and N be two 3×3 non-singular skew symmetric matrices such that $\mathrm{MN}=$ NM. If P^{T} denotes the transpose of P , then $M^{2} N^{2}\left(M^{T} N\right)^{-1}\left(M N^{-1}\right)^{T}$ is equal to
(A) M^{2} (B) $-N^{2}$
(C) $-M^{2}$
(D) MN

The problem is wrong as any skew-symmetric matrix of odd order is singular!
11. The vector(s) which is/are coplanar with vectors $\hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$ and perpendicular to the vector $\hat{i}+\hat{j}+\hat{k}$ is/are
(A) $\hat{j}-\hat{k}$
(B) $-\hat{i}+\hat{j}$
(C) $\hat{i}-\hat{j}$
(D) $-\hat{j}+\hat{k}$

Ans: (A) and (D) Try yourself!

SECTION-III (Total Marls : 15)

(Paragraph Type)
This section contains 2 paragraphs. Based upon one of paragraphs 2 multiple choice questions and based on the
other paragraph 3 multiple choice questions have to be answered. Each of these questions has four choices (A), (B),
(C) and (D) out of which ONLY ONE is correct.

Paragraph for Question Nos. 12 to 16
Let a, b and c be three real numbers satisfying
$\left[\begin{array}{lll}a & b & c\end{array}\right]\left[\begin{array}{lll}1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ \qquad
12. If the point $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$, with reference to (E), lies on the plane $2 \mathrm{x}+\mathrm{y}+\mathrm{z}=1$, then the value of $7 a+b+c$ is
(A) 0 (B) 12 (C) 7 (D) 6

Equation E is a system of homogeneous equation with infinite solutions
$a+8 b+7 c=0$
$9 a+2 b+3 b=0$
$7 a+7 b+7 c=0$
Solving by cross-multiplication we get $\frac{a}{10}=\frac{-b}{-60}=\frac{c}{-70}$ which gives $\mathrm{b}=6 \mathrm{a}$ and $\mathrm{c}=-7 \mathrm{a}$
According to the problems $2 a+b+c=1$ which gives $a=1$, thus $b=6$ and $c=-6$. therefore $7 \mathrm{a}+\mathrm{b}+\mathrm{c}=7+6-7=6$ Ans: (D)
13. Let $\bar{\square}$ be a solution of $x^{3}-1=0$ with $\operatorname{Im}(\Phi)>0$. If $\mathrm{a}=2$ with b and c satisfying (E), then the value of $\frac{3}{\bar{\sigma}^{a}}+\frac{1}{\bar{\sigma}^{b}}+\frac{3}{\bar{\sigma}^{c}}$ is equal to
(A) -2
(B) 2 (C) 3
(D) -3

When $\mathrm{a}=2$ we see that $\mathrm{b}=12$ and $\mathrm{c}=-14$.
Therefore $\frac{3}{\varpi^{a}}+\frac{1}{\varpi^{b}}+\frac{3}{\varpi^{c}}=\frac{3}{\bar{\varpi}^{2}}+\frac{1}{\varpi^{12}}+\frac{3}{\varpi^{-14}}$
14. Let $\mathrm{b}=6$, with a and c satisfying (E). If α and β are the roots of the quadratic equation $a x^{2}+b x+c=0$, then $\sum_{n=0}^{\infty}\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)^{n}$
(A) 6 (B) 7 (C) $6 / 7$ (D) ∞

Ans: (B) 7
With $\mathrm{b}=6$, we have $\mathrm{a}=1$ and $\mathrm{c}=-7$. therefore the quadratic equation becomes $x^{2}+6 x-7=0$, it follows that $\alpha+\beta=-6$ and $\alpha \beta=-7$.
Now $\sum_{n=0}^{\infty}\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)^{n}=\quad \sum_{n=0}^{\infty}\left(\frac{\beta+\alpha}{\alpha \beta}\right)^{n}=\sum_{n=0}^{\infty}\left(\frac{6}{7}\right)^{n}=\frac{1}{1-\frac{6}{7}}=7$.

Paragraph for Question Nos. 15 to 16

Let U 1 and U 2 be two urns such that U 1 contains 3 white and 2 red balls, and U2 contains only 1 white ball. A fair coin is tossed. If head appears then 1 ball is drawn at random from U1 and put into U2. However, if tail appears then 2 balls are drawn at random from U 1 and put into U 2 . Now 1 ball is drawn at random from U 2 .
15. The probability of the drawn ball from U 2 being white is
(A) $13 / 30$
(B) $23 / 30$
(C) $19 / 30$
(D) $11 / 30$
16. Given that the drawn ball from U 2 is white, the probability that head appeared on the coin is
(A) $17 / 23$
(B) 11/23
(C) 15/23
(D) $12 / 23$

SECTION-IV (Total Marks : 28)

(Integer Answer Type)
This section contains 7 questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9 .
The bubble corresponding to the correct is to be darkened in the ORS.
17. Let $f(\theta)=\sin \left(\tan ^{-1}\left(\frac{\sin \theta}{\sqrt{\cos 2 \theta}}\right)\right)$, where $-\frac{\pi}{4}<\theta<\frac{\pi}{4}$. Then find the value of $\frac{d}{d(\tan \theta)}(f(\theta))$ Ans 1. Use trigonometry!!!!!
18. Consider the parabola $y^{2}=8 x$. Let Δ_{1} be the area of the triangle formed by the end points of its latus rectum and the point $P\left(\frac{1}{2}, 2\right)$ on the parabola, and Δ_{2} be the area of the triangle formed by drawing tangents at P and at the end points of the latus rectum. Then $\frac{\Delta_{1}}{\Delta_{2}}$ is Ans: 2 Easy
19. The minimum value of the sum of real numbers $a^{-5}, a^{-4}, 3 a^{-3}, 1, a^{8}$ and a^{10} with a >0 is Ans 8 Hint Aapply wtA. $M \geq w t G . M$
20. Let $f:[1, \infty) \rightarrow[2, \infty)$ be a differentiable function such that $\mathrm{f}(1)=2$. If $6 \int_{1}^{x} f(t) d t=3 x f(x)-x^{3}$ for all $x \geq 1$, then the value of $\mathrm{f}(2)$ is Ans: 6 Hint:
Differentiate $6 \int_{1}^{x} f(t) d t=3 x f(x)-x^{3}$ to get $6 f(x)=3 f(x)+3 x f^{\prime}(x)-3 x^{2}$ which is a linear differential equation.
21. If z is any complex number satisfying $|\mathrm{z}-3-2 \mathrm{i}| \leq 2$, then the minimum value of \mid $2 z-6+5 \mathrm{i}$ is
22. The positive integer value of $\mathrm{n}>3$ satisfying the equation
$\frac{1}{\sin \left(\frac{\pi}{n}\right)}=\frac{1}{\sin \left(\frac{2 \pi}{n}\right)}+\frac{1}{\sin \left(\frac{3 \pi}{n}\right)}$ Ans: 7 Simple!! put $\frac{\pi}{n}=\theta$ for the hint!!

Author-Vinod Singh

Education : M.Sc Pure Mathematics'09,(Calcutta University) First Class. B.Sc Mathematics Honours'07,(St. Xavier's kolkata) First Class. Special interest in Algebra, Algebraic and Analytical Number Theory, Cryptography, Algebraic Topology and Geometry. http://kolkatamaths.yolasite.com http://facebook.com/kolkatamaths Best of luck!
©
Call us on +91-9038126497
Mail-maths.kolkata@gmail.com/maths.vinu@gmail.com No part of this publication may be reproduced, stored or transmitted in any form or by any means - electronic, mechanical, photocopying, recording or otherwise - without written permission from the Author

Tags: IIT-JEE, AIEEE, WBJEE, Solved IIT-JEE paper 2011

