Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com
Derivatives of Parametric Equations
At times $x \& y$ are given as functions of a variable t.

Let $x=\varphi(t) \& y=\varphi(t)$
Then $\frac{d x}{d t}=\varphi^{\prime}(t)+\frac{d y}{d t}=\psi^{\prime}(t)$

$$
\begin{aligned}
& \therefore \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\varphi^{\prime}(t)}{\varphi^{\prime}(t)}, \\
& \varphi^{\prime}(t) \neq 0 .
\end{aligned}
$$

1. $x=a \cos ^{3} \theta, y=6 \sin ^{3} \theta$

$$
\therefore \frac{d x}{d \theta}=-3 a \cos ^{2} \theta \sin \theta
$$

$f \frac{d y}{d \theta}=3 b \sin ^{2} \theta \cos \theta$

$$
\begin{aligned}
\therefore \frac{d y}{d x} & =\frac{d y / d \theta}{d x \mid d \theta}=\frac{3 b \sin ^{2} \theta \cos \theta}{-3 a \cos ^{2} \theta \sin \theta} \\
& =-\frac{b}{a} \tan \theta \quad \text { Ares }
\end{aligned}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com
2. $x=a \cos \frac{\theta}{2}, y=b \sin \frac{\theta}{2}$

$$
\therefore \frac{d x}{d \theta}=-\frac{1}{2} a \sin \frac{\theta}{2} \quad \& \frac{d y}{d \theta}=\frac{1}{2} b \cos \theta / 2
$$

So,

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\frac{1}{2} b \cos \theta / 2}{-\frac{1}{2} a \sin \theta / 2} \\
& =-\frac{b}{a} \cot \theta / 2 \text { Ats }
\end{aligned}
$$

3. $x=a(2 t+\sin 2 t), y=a(1-\cos 2 t)$

$$
\therefore \frac{d x}{d t}=2 a(1+\cos 2 t)
$$

$4 \frac{d y}{d t}=2 a \sin 2 t$
So, $\frac{d y}{d x}=\frac{2(\sin 2 t}{2 \mu(1+\cos 2 t)}=\frac{12 \sin t \cos t}{R^{2} \cos ^{2} t}$
$=\tan t$ Ans

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com

$$
\begin{aligned}
& \text { 4. } \begin{aligned}
& x=\frac{3 a t}{1+t^{3}}, y=\frac{3 a t^{2}}{1+t^{3}} \\
& \begin{aligned}
\therefore \frac{d x}{d t} & =3 a \frac{d}{d t}\left(\frac{t}{1+t^{3}}\right) \\
& =3 a \frac{\left(1+t^{3}\right) \cdot 1-t \cdot 3 t^{2}}{\left(1+t^{3}\right)^{2}} \\
& =3 a \frac{1-2 t^{3}}{\left(1+t^{3}\right)^{2}} \\
& =3 a \frac{2 t-t^{4}}{\left(1+t^{3}\right)^{2}}=\frac{3 a t\left(2-t^{3}\right)}{\left(1+t^{3}\right)^{2}} \\
\text { So, } \frac{d y}{d x} & =\frac{3 a t\left(2-t^{3}\right)}{\left(1+t^{3}\right)^{2}} \times \frac{\left(1+t^{3}\right)^{2}}{3 d\left(1-2 t^{3}\right)} \\
& =3 a \cdot \frac{\left(1+t^{3}\right) \cdot 2 t-t^{2} \cdot 3 t^{2}}{\left(1+t^{3}\right)^{2}} \\
& =\frac{t\left(2-t^{3}\right)}{1-2 t^{3}}
\end{aligned}
\end{aligned}=\text { Ans }
\end{aligned}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com
(5) $x=a\left(\frac{1-t^{2}}{1+t^{2}}\right), y=b \frac{2 t}{1+t^{2}}$

Put $t=\tan \theta$.

$$
\begin{aligned}
& \Rightarrow x=a\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right) \& y=b \frac{2 \tan \theta}{1+\tan ^{2} \theta} \\
& \Rightarrow x=a \cos 2 \theta \quad \& y=b \sin 2 \theta \\
& \therefore \frac{d x}{d \theta}=-2 a \sin 2 \theta
\end{aligned}
$$

A $\frac{d y}{d \theta}=2 b \cos 2 \theta$
So, $\frac{d y}{d x}=-\frac{2 b \cos 2 \theta}{2 a \sin 2 \theta}$

$$
\begin{aligned}
& =-\frac{b}{a \tan 2 \theta}=-\frac{b}{a} \frac{1-\tan ^{2} \theta}{2 \tan \theta} \\
& =-\frac{b}{a}\left(\frac{1-t^{2}}{2 t}\right) \text { Ans } \\
& (\because \tan \theta=t)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (6) } \begin{aligned}
x & =a(2 \cos t+\cos 2 t), y=a(2 \sin t-\sin 2 t) \\
\therefore \frac{d x}{d t} & =a(-2 \sin t-2 \sin 2 t) \\
& =-2 a \sin t(1+2 \cos t) \\
A \frac{d y}{d t} & =a(2 \cos t-2 \cos 2 t) \\
& =2 a(\cos t-\cos 2 t) \\
\therefore \frac{d y}{d x} & =-\frac{d a(\cos t-\cos 2 t)}{2 / \sin t(1+2 \cos t)} \\
& =\frac{\cos 2 t-\cos t}{\sin t(1+2 \cos t)} \\
& =\frac{2 \cos t-\cos t-1}{\sin t(1+2 \cos t)} \\
& =\frac{(\cos t-1)(2 \cos t+1)}{\sin t(1+2 \cos t)} \\
& =\frac{-2 \sin t / 2}{2 \sin t / 2 \cos t / 2}=-\tan t / 2
\end{aligned}
\end{aligned}
$$

Ary

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

$$
\begin{aligned}
& \text { (7) } x=a \sec ^{2} \theta, y=a^{2} \tan ^{3} \theta \\
& \therefore \frac{d x}{d \theta}=2 a \sec \theta \cdot \sec \theta \cdot \tan \theta \\
& \& \frac{d y}{d \theta}=3 a \tan ^{2} \theta \cdot \sec ^{2} \theta
\end{aligned}
$$

So, $\frac{d y}{d x}=\frac{3 p \tan ^{2} \theta \cdot \sec ^{2} \theta}{2 \phi \sec ^{2} \theta \cdot \tan \theta}$

$$
=\frac{3}{2} \tan \theta
$$

(8)

$$
\begin{aligned}
& x=\ln \left(\tan \frac{t}{2}\right), y=\sin t \\
& \therefore \frac{d n}{d t}=\frac{1}{\tan \frac{t}{2}} \cdot \sec ^{2} \frac{t}{2} \cdot \frac{1}{2} \\
&=\frac{1}{2} \frac{\sec ^{2} t / 2}{\tan t / 2}=\frac{1}{2 \sin \frac{t}{2} \cos \frac{t}{2}} \\
&=\frac{1}{\sin t}
\end{aligned}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com
A $\frac{d y}{d t}=\cos t$

$$
\text { so } \frac{d y}{d x}=\frac{\cos t}{\frac{1}{\sin t}}=\sin t \cos t
$$

(9)

$$
\begin{aligned}
& \text { (9) } \begin{aligned}
& x=t \ln t, y=\frac{\ln t}{t} \\
& \therefore \frac{d x}{d t}=\frac{t}{t}+\ln t \\
&=1+\ln t \\
& \& \frac{d y}{d t}=\frac{t \cdot \frac{1}{t}-\ln t \cdot 1}{t^{2}} \\
&=\frac{1-\ln t}{t^{2}} \\
& S_{0} \\
& \frac{d y}{d x}=\frac{1-\ln t}{t^{2}(1+\ln t)} \\
&\left.\therefore \frac{d y}{d x}\right|_{t=1}=\frac{1-\ln 1}{1 \cdot(1+\ln 1)} \\
&=\frac{1}{1}=1 \text { Ans }
\end{aligned}
\end{aligned}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)
(10) $x=\sqrt{\sin 2 t}, y=\sqrt{\cos 2 t}$ at $t=\frac{\pi}{6}$

$$
\Rightarrow x^{2}=\sin 2 t \& y^{2}=\cos 2 t
$$

Now, $\sin ^{2} 2 t+\cos ^{2} 2 t=1$

$$
\therefore x^{4}+y^{4}=1
$$

diff? both site w.r.t ' x '
we get

$$
\begin{aligned}
4 x^{3} & +4 y^{3} \frac{d y}{d x}=0 \\
\Rightarrow \frac{d y}{d x} & =-\left(\frac{x}{y}\right)^{3} \\
& =-\left(\frac{\sin 2 t}{\cos 2 t}\right)^{3 / 2} \\
\left.\therefore \frac{d y}{d x}\right|_{t=} \frac{\pi}{6} & =-\left(\frac{\sin \pi / 3}{\cos \pi / 3}\right)^{3 / 2} \\
& =-(\tan \pi / 3)^{3 / 2} \\
& =-(\sqrt{3})^{3 / 2} \text { Ans }
\end{aligned}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com
(11) $x=2 a \sin ^{2} t \cos 2 t, y=2 a \sin ^{2} t \sin 2 t$ when $t=\frac{\pi}{12}$

$$
\begin{aligned}
& \therefore \frac{d x}{d t}=2 a \frac{d}{d t}\left(\sin ^{2} t \cos 2 t\right) \\
& \quad=2 a\left(\sin ^{2} t(-2 \sin 2 t)+\cos 2 t \cdot 2 \sin t \cos t\right) \\
& \quad=2 a\left(-2 \sin ^{2 t} \sin ^{2} t+\cos 2 t \sin 2 t\right) \\
& \quad=2 a \sin 2 t\left(-2 \sin ^{2} t+\cos 2 t\right) \\
& =2 a \sin 2 t(2 \cos 2 t-1+\cos 2 t) \\
& =2 a \sin 2 t(2 \cos 2 t-1)
\end{aligned}
$$

$4 \frac{d y}{d t}=2 a\left(2 \sin ^{2} t \cos 2 t+\sin 2 t \cdot 2 \sin t \cos t\right)$

$$
=\operatorname{la}\left(2 \sin ^{2} t \cos 2 t+\sin ^{2} 2 t\right)
$$

$$
=2 a\left((1-\cos 2 t) \cdot \cos 2 t+\sin ^{2} 2 t\right)
$$

$$
=\operatorname{La}\left(\cos 2 t-\cos ^{2} 2 t+\sin ^{2} 2 t\right)
$$

$$
=\alpha(\cos 2 t-\cos 4 t)
$$

$$
\begin{aligned}
& \therefore \frac{d y}{d x}=\frac{d a(\cos 2 t-\cos 4 t)}{2 / a \sin 2 t(2 \cos 2 t-1)} \\
& \left.\Rightarrow \frac{d y}{d x}\right|_{t=\frac{\pi}{12}}=\frac{\cos \pi / 6-\cos \pi / 3}{\sin \frac{\pi}{6}\left(2 \cos \frac{\pi}{6}-1\right)}=\frac{\frac{\sqrt{3}}{2}-\frac{1}{2}}{\frac{1}{2}(\sqrt{3}-1)}
\end{aligned}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B. Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com
(12) $x=a(\theta+\sin \theta), y=a(1+\cos \theta)$

$$
\therefore \frac{d x}{d \theta}=a(1+\cos \theta)
$$

$4 \frac{d y}{d \theta}=-a \sin \theta$
So, $\frac{d y}{d x}=\frac{-q \sin \theta}{q^{d}(1+\cos \theta)}=\frac{-k \sin \theta / 2 \cos \theta / 2}{2 \cos ^{2} \theta / 2}$
$=-\tan \theta / 2$ Ans
(13) $x=\frac{\sin ^{3} \theta}{\sqrt{\cos 2 \theta}}, y=\frac{\cos ^{3} \theta}{\sqrt{\cos 2 \theta}}$

$$
\begin{aligned}
\therefore \frac{d x}{d \theta} & =\frac{\sqrt{\cos 2 \theta} \cdot 3 \sin ^{2} \theta \cdot \cos \theta-\sin ^{3} \theta \times \frac{1}{2 \sqrt{\cos 2 \theta}} \times(-2 \sin 2 \theta)}{\cos 2 \theta} \\
& =\frac{3 \sqrt{\cos 2 \theta} \sin ^{2} \theta \cos \theta+\frac{\sin ^{3} \theta \sin 2 \theta}{\sqrt{\cos 2 \theta}}}{\cos 2 \theta} \\
& =\frac{3 \cos 2 \theta \sin ^{2} \theta \cos \theta+\sin ^{3} \theta \sin 2 \theta}{\sqrt{\cos 2 \theta} \cos 2 \theta}
\end{aligned}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

$$
\begin{aligned}
& t \frac{d y}{d \theta}=\frac{\sqrt{\cos 2 \theta} \cdot 3 \cos ^{2} \theta \cdot(-\sin \theta)-\cos ^{3} \theta \frac{1}{2 \sqrt{\cos 2 \theta}} \times(-2 \sin 2 \theta)}{\cos 2 \theta} \\
&=\frac{-3 \sqrt{\cos 2 \theta} \cos ^{2} \theta \sin \theta+\frac{\cos ^{3} \theta \cdot \sin 2 \theta}{\sqrt{\cos 2 \theta}}}{\cos 2 \theta} \\
&=\frac{-3 \cos 2 \theta \cos ^{2} \theta \sin \theta+\cos ^{3} \theta \cdot \sin 2 \theta}{\sqrt{\cos 2 \theta} \cos 2 \theta} \\
& \text { So, } \begin{aligned}
\frac{d y}{d x} & =\frac{-3 \cos 2 \theta \cos ^{2} \theta \sin \theta+\cos ^{3} \theta \cdot \sin 2 \theta}{3 \cos 2 \theta \sin ^{2} \theta \cos \theta+\sin ^{3} \theta \cdot \sin 2 \theta} \\
& =\frac{\cos ^{2} \theta \sin \theta\left(-3 \cos 2 \theta+2 \cos ^{2} \theta\right)}{\sin ^{2} \theta \cos \theta\left(3 \cos 2 \theta+2 \sin ^{2} \theta\right)} \\
& =\cot ^{2} \theta \cdot\left(\frac{3-4 \cos s^{2} \theta}{\left.3-4 \sin ^{2} \theta\right)} A_{\operatorname{An}}\right)
\end{aligned}
\end{aligned}
$$

(14)

$$
\begin{aligned}
& x=a(\cos \theta+\ln \tan \theta / 2), \\
& y=a \sin \theta, \text { when } \theta=\pi / 3
\end{aligned}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com

$$
\begin{aligned}
& \therefore \frac{d x}{d \theta}=a\left(-\sin \theta+\frac{1}{\tan \frac{\theta}{2}} \sec ^{2} \frac{\theta}{2} \times \frac{1}{2}\right) \\
&=a\left(-\sin \theta+\frac{1}{2} \frac{1}{\sin \frac{\theta}{2} \cdot \cos \frac{\theta}{2}}\right) \\
&=a\left(-\sin \theta+\frac{1}{\sin \theta}\right) \\
&=a(-\sin \theta+\operatorname{cosec} \theta) \\
& f \frac{d y}{d \theta}=a \cos \theta \\
& \text { So, } \frac{d y}{d n}=\frac{d \cos \theta}{d n}(-\sin \theta+\operatorname{cosec} \theta) \\
& \therefore \frac{d y}{d n} \int \theta=\frac{\pi}{3} \\
& \therefore=\frac{-\cos \pi / 3}{-\sin \pi / 3+\operatorname{cosec} \pi / 3} \\
&=\frac{1 / 2}{-\frac{\sqrt{3}}{2}+\frac{2}{\sqrt{3}}} \\
&=\frac{1 / 2}{(4-3)} \times 2 \sqrt{3}=\sqrt{3}
\end{aligned}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com
(15)

$$
\begin{aligned}
& t \tan y=\frac{2 t}{1-t^{2}}, \sin x=\frac{2 t}{1+t^{2}} \\
& \Rightarrow y=\tan ^{-1}\left(\frac{2 t}{1-t^{2}}\right) f x=\sin ^{-1}\left(\frac{2 t}{1+t^{2}}\right)
\end{aligned}
$$

Put $t=\tan \theta$

$$
\begin{aligned}
& \Rightarrow y=\tan ^{-1}(t \tan 2 \theta) f_{x}=\sin ^{-1}(\sin 2 \theta) \\
& x y=d \theta \quad f x=2 \theta \\
& \therefore \frac{d x}{d \theta}=2 \quad f \frac{d y}{d \theta}=2
\end{aligned}
$$

So, $\frac{d y}{d x}=1$ Ans
(16) $x=\sec ^{-1}\left(\frac{1}{1-2 t^{2}}\right), y=\sin ^{-1}\left(3 t-4 t^{3}\right)$

$$
\begin{aligned}
& \text { Put } x=\sin \theta \\
\Rightarrow & x=\sec ^{-1}\left(\frac{1}{\cos 2 \theta}\right) \quad y=\sin ^{1}(\sin 3 \theta) \\
\Rightarrow & x=2 \theta \quad y=3 \theta \\
\therefore & \frac{d y}{d x}=\frac{3}{2} \text { Aus }
\end{aligned}
$$

(17) $x=\sec ^{-1}\left(\frac{1}{2 t^{2}-1}\right), y=\tan ^{-1}\left(\frac{t}{\sqrt{1+t^{2}}}\right)$

Put $t=\cos \theta$

$$
\begin{aligned}
& x x=\sec ^{+}\left(\frac{1}{\cos 2 \theta}\right), y=\tan ^{+}\left(\frac{\cos \theta}{\sin \theta}\right) \\
& x x=2 \theta, y=\frac{\pi}{2}-\theta
\end{aligned}
$$

So, $\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{-1}{2}$ Ans.
(18) $x=\cos ^{2}\left(\frac{1-t^{2}}{1+t^{2}}\right), y=\tan ^{-1}\left(\frac{3 t t^{3}}{1-3 t^{2}}\right)$

Pot $t=\tan \theta$

$$
x a=20, y=38
$$

So, $\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=3 / 2$
(14) $x=\sec ^{-1}\left(\frac{1+t^{2}}{1-t^{2}}\right), y=\tan ^{-1}\left(\frac{3 t-t^{3}}{1-3 t^{2}}\right)$ Pot $t=\tan \theta$.

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com
(20) $x=\cos ^{-1}\left(8 t^{4}-8 t^{2}+1\right), y=\sin ^{-1}\left(3 t-4 t^{3}\right)$

Put $t=\sin \theta$

$$
\begin{aligned}
& \Rightarrow x=\cos ^{2}\left(8 \sin ^{2} \theta\left(\sin ^{2} \theta-1\right)+1\right) \\
& A=y=\sin ^{4}(\sin 3 \theta) \\
& \Rightarrow x=\cos ^{-1}\left(1-8 \sin ^{2} \theta \cos ^{2} \theta\right), y=3 \theta \\
& \Rightarrow x=\cos ^{4}\left(1-2 \sin ^{2} 2 \theta\right), y=3 \theta \\
& \Rightarrow x=\cos ^{4}(\cos 4 \theta)=y=3 \theta \\
& \Rightarrow x=4 \theta, y=3 \theta \\
& \Rightarrow \frac{d y}{d x}=\frac{d y / d \theta}{d x \mid d \theta}=\frac{3}{4} A y
\end{aligned}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com

Derivative of one function with
respect to another function.
To find the derivative of $f(x)$ w.r.t another function, ray $g(x)$.

Let $y=f(x) f z=g(x)$

$$
\therefore \frac{d y}{d x}=f^{\prime}(x) \quad f \frac{d z}{d x}=g^{\prime}(x)
$$

So, $\frac{d y}{d t}$ is the required
Rues, $\frac{d y}{d z}=\frac{\operatorname{ly} \mid d x}{d z(d x}=\frac{f^{\prime}(x)}{g^{\prime}(x)}$
(21) Derivative of

$$
\begin{aligned}
& \text { Derivative } \\
& \frac{\tan ^{-1} x}{1+\tan ^{-1} x} \text { w.r.t } \tan ^{-1} x \text {. }
\end{aligned}
$$

Let $y=\frac{\tan ^{-1} x}{1+\tan ^{-1} x} \quad f z=\tan ^{-1} x$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kokkata (First Class)
-mail maths.programming@gmail.com / prime.maths@hotmail.com

Put $x=\tan \theta$

$$
\begin{aligned}
\Rightarrow y & =\frac{\theta}{1+\theta} \quad f z=\theta \\
\therefore \frac{d y}{d \theta} & =\frac{(1+\theta) \cdot 1-\theta \cdot 1}{(1+\theta)^{2}} \\
& =\frac{1}{(1+\theta)^{2}}
\end{aligned}
$$

\& $\frac{d z}{d \theta}=1$.
So, $\frac{d y}{d z}=\frac{\frac{1}{(1+\theta)^{2}}}{1}$

$$
\frac{1}{(1+\theta)^{2}}=\frac{1}{\left(1+\tan ^{-1} x\right)^{2}}
$$

(22) derivative of $x^{\sin ^{-1} x}$ w.r.t
$\operatorname{son}^{-1} x$.

Let $y=x^{\sin ^{-1} x} \quad f z=\sin ^{1} x$

$$
\Rightarrow \quad \ln y=\sin ^{-1} x \ln x \quad f \frac{d z}{d x}=\frac{1}{\sqrt{1-x^{2}}}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com

$$
\begin{aligned}
\therefore \frac{1}{y} \frac{d y}{d x} & =\frac{\sin ^{-1} x}{x}+\frac{\ln x}{\sqrt{1-x^{2}}} \\
\therefore \frac{d y}{d x} & =y\left\{\frac{\sin ^{-1} x}{x}+\frac{\ln x}{\sqrt{1-x^{2}}}\right\} \\
& =x^{\sin ^{-1} x}\left\{\frac{\sin ^{-1} x}{x}+\frac{\ln x}{\sqrt{1-x^{2}}}\right\}
\end{aligned}
$$

$$
\operatorname{lo}_{1} \frac{d y}{d z}=\frac{d y / d x}{d z / d x}
$$

$$
=\frac{x^{-\sin ^{-1} x}\left(\sqrt{1-x^{2}} \sin ^{-1} x+x \ln x\right)}{\not x \sqrt{1-x^{2}}\left(1 / \sqrt{1-x^{2}}\right)}
$$

$$
\frac{x^{\sin ^{-1} x\left(\sqrt{1-x^{2}} \sin ^{-1} x+x \ln x\right) \text { Ans }}}{x(x)}
$$

(23) Find $\frac{d y}{d x}$ where (i) $y=\frac{(x+2)}{(x-1)(x+5)}$
(ii) $y=\sqrt{\frac{x^{2}+1}{x^{2}-1}}$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com
(iii) $y=\sqrt{\frac{1+x+x^{2}}{1-x+x^{2}}}$
(iv) $y=\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}}$
(v) $y=\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}$
(vi) $y=\frac{\sqrt{a^{2}+x^{2}}+\sqrt{a^{2}-x^{2}}}{\sqrt{a^{2}+x^{2}}-\sqrt{a^{2}-x^{2}}}$

Solution
(i)

$$
\begin{aligned}
& \text { (i) } y=\frac{(x+2)}{(x-1)(x+5)} \\
& \Rightarrow \ln y=\ln (x+2)-\ln (x-1)(x+5) \\
& \Rightarrow \ln y=\ln (x+2)-\ln (x-1)-\ln (x+5) \\
& \therefore \frac{1}{y} \frac{d y}{\ln }=\frac{1}{x+2}-\frac{1}{x-1}-\frac{1}{x+5} \\
& \Rightarrow \frac{d y}{d x}=y\left(\frac{1}{x+2}-\frac{1}{x-1}-\frac{1}{x+5}\right) \text { hrs }
\end{aligned}
$$

(Put back the value of y).

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com

$$
\begin{aligned}
& \text { (1i) } y=\sqrt{\frac{x^{2}+1}{x^{2}-1}} \\
& \Rightarrow \ln y=\frac{1}{2} \ln \left(\frac{x^{2}+1}{x^{2}-1}\right) \\
& \Rightarrow \ln y=\frac{1}{2} \ln \left(x^{2}+x\right)-\frac{1}{2} \ln \left(x^{2}-1\right) \\
& \therefore \frac{1}{y} \frac{d y}{d x}=\frac{1}{2} \frac{1}{\left(x^{2}+1\right)} \times 2 x-\frac{1}{2\left(x^{2}-1\right)} \times 2 x \\
&=\frac{x}{x^{2}+1}-\frac{x}{x^{2}-1} \\
&=\frac{x\left(x^{2}+-x^{2}-1\right)}{2 x^{4}-1} \\
&=\frac{-2 x}{x^{4}-1} \\
& \Rightarrow \frac{d y}{d r}=-2 x \frac{x^{2}+1}{x^{2}-1} \times \frac{1}{\left(x^{4}-1\right)} \\
&=\frac{-2 x \sqrt{x^{2}+1}}{\sqrt{x^{2}-1}\left(x^{2}-1\right)\left(x^{2}+1\right)} \\
&=\frac{-2 x}{\sqrt{x^{2}+1}\left(x^{2}-\right)^{3 / 2}} \text { Ang }
\end{aligned}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class)
B. Sc. Mathematics., St. Xavier's College Kolkata (First Class) \quad E-mail maths.programming@gmail.com / prime.maths@hotmail.com

$$
\begin{aligned}
& \text { (20) (iii) } y=\sqrt{\frac{1+x+x^{2}}{1-x+x^{2}}} \\
& \Rightarrow \ln y=\frac{1}{2} \ln \left(1+x+x^{2}\right)-\frac{1}{2} \ln \left(1-x+x^{2}\right) \\
& \therefore \frac{1}{y} \frac{d y}{d x}=\frac{2 x+1}{2\left(x^{2}+x+1\right)}-\frac{(2 x-1)}{2\left(1-x+x^{2}\right)} \\
& \Rightarrow \frac{d y}{d x}=\frac{y}{2}\left\{\frac{2 x+1}{x^{2}+x+1}-\frac{2 x-1}{x^{2}-x+1}\right\} \\
& =\frac{y}{2}\left\{\frac{(2 x+1)\left(x^{2}-x+1\right)-(2 x-1)\left(x^{2}+x+1\right)}{\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)}\right\} \\
& =\frac{y}{2}\left(1-x^{2}\right) \\
& \left(x^{2}+x^{2}\right)\left(x^{2}-x+1\right) \\
& \\
& =\frac{\sqrt{1+x+x^{2}} \times\left(1-x^{2}\right)}{\sqrt{1-x+x^{2}}} \times \frac{\left(1+x+x^{2}\right)\left(1-x+x^{2}\right)}{\left(1-x^{2}\right)} \\
& =\frac{\sqrt{1+x+x^{2}} \cdot\left(1-x^{2}+x^{2}\right)^{3 / 2}}{\text { Ar }}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \frac{d}{d x}(x y)=\frac{d}{d x}(1+\sqrt{1-x}) \\
& \Rightarrow \frac{x}{d y}+y=\frac{1}{d \sqrt{1-x^{2}}} \times\left(-x_{x}\right)
\end{aligned}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com
(vi)

$$
\begin{aligned}
& \text { (vi) } y=\frac{\sqrt{a^{2}+x^{2}}+\sqrt{a^{2}-x^{2}}}{\sqrt{a^{2}+x^{2}}-\sqrt{a^{2}-x^{2}}} \\
&=\frac{\left(\sqrt{a^{2}+x^{2}}+\sqrt{a^{2}-x^{2}}\right)^{2}}{\left(a^{2}+x^{2}\right)-\left(a^{2}-x^{2}\right)} \\
&=\frac{a^{2}+x^{4}+a^{2}-x^{2}+2 \sqrt{a^{4}-x^{4}}}{2 a^{2}} \\
&= 2 a^{2}+2 \sqrt{a^{4}-x^{4}} \\
& 2 x^{2} \\
&=\frac{a^{2}+\sqrt{a^{4}-x^{4}}}{x^{2}} \\
& \Rightarrow y^{2}=a^{2}+\sqrt{a^{4}-x^{4}} \\
& \therefore \frac{d}{d x}\left(y x^{2}\right)=\frac{d}{d x}\left(a^{2}+\sqrt{a^{4}-x^{4}}\right) \\
& \Rightarrow x^{2} \frac{d y}{d x^{2}}+y \times 2 x=\frac{-1}{2 \sqrt{a^{4}-x^{4}}} \times 4 x^{3}
\end{aligned}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B. Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com

$$
\begin{aligned}
& \Rightarrow x^{2} \frac{d y}{d x}+2 x y=\frac{-2 x^{3}}{\sqrt{a^{4}-x^{4}}} \\
& \Rightarrow x^{2} \frac{d y}{d x}+2 x y=\frac{-2 x^{3}}{\left(y^{2}-a^{2}\right)} \\
& \Rightarrow x^{2} \\
& \Rightarrow x^{2} \frac{d y}{d x}=\frac{-2 x^{3}}{\left(y^{2}-a^{2}\right)}-2 x y \\
& \Rightarrow \frac{d y}{d x}=\frac{-2 x}{\left(y x^{2}-a^{2}\right)}-\frac{2 y}{x} \\
& =-2\left(\frac{x}{y x^{2}-a^{2}}+\frac{y}{x}\right) \\
& =-2\left(\frac{x^{2}+y^{2} x^{2}-a^{2} y}{x\left(y x^{2}-a^{2}\right)}\right)
\end{aligned}
$$

Ans

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com
(24) If $y=\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)+\sin \left(e^{x}\right)$
find $\frac{d y}{d x}$

$$
\begin{aligned}
& y=\tan ^{-1}\left(\frac{\cos x}{1+\sin x}\right)+\sin \left(e^{x}\right) \\
&=\tan ^{-1}\left(\frac{\sin \left(\frac{\pi}{2}-x\right)}{1+\cos \left(\frac{\pi}{2}-x\right)}\right)+\sin e^{x} \\
&=\tan ^{-1}\left(\frac{R \sin \left(\frac{\pi}{4}-\frac{x}{2}\right) \cos \left(\frac{\pi}{4}-\frac{x}{2}\right)}{2 \cos ^{2}\left(\frac{\pi}{4}-\frac{x}{2}\right)}\right)+\sin e^{x} \\
&=\tan ^{2}\left(\tan \left(\frac{\pi}{4}-\frac{x}{2}\right)\right)+\sin e^{x} \\
&=\frac{\pi}{4}-\frac{x}{2}+\sin e^{x} \\
& \therefore \frac{\operatorname{sy}}{2}=-\frac{1}{2}+\cos e^{x} \cdot e^{x} \text { Ans } \\
& \therefore x
\end{aligned}
$$

(25) If $y=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)$ find $\frac{d y}{d x}$

Put $n=a \sin \theta$

$$
\begin{aligned}
& \therefore y=\frac{a}{2} \sin \theta \sqrt{a^{2}\left(1-\sin ^{2} \theta\right)}+\frac{a^{2}}{2} \sin ^{2}\left(\frac{a \sin \theta}{a}\right) \\
& =\frac{a^{2}}{2} \sin \theta \cos \theta+\frac{a^{2}}{2} \theta \\
& \Rightarrow y=\frac{a^{2}}{4} \sin 2 \theta+\frac{a^{2}}{2} \theta \\
& f x=a \sin \theta \\
& \therefore \frac{d y}{d \theta}=\frac{2 a^{2} \cos 2 \theta}{4}+\frac{a^{2}}{2} \\
& =\frac{a^{2} \cos 20}{2}+\frac{a^{2}}{2} \\
& \begin{array}{l}
f \frac{d x}{d \theta}=\frac{a \cos \theta}{d x}=\frac{\frac{a^{2}}{2}+\frac{a^{2} \cos 2 \theta}{2}}{a \cos \theta}
\end{array} \\
& =\frac{a \not \alpha(1+\cos 2 \theta)}{2 \phi \cos \theta}=\frac{2 \operatorname{Qos}^{2} \theta}{2 \cos \theta} \\
& =a \cos \theta=a \sqrt{1-\frac{x^{2}}{a^{2}}} \\
& =\sqrt{a^{2}-x^{2}} \text { Arz }
\end{aligned}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B. Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com
(2e) If $y=\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+\sin ^{2}\left(\frac{x}{x}\right)$
find $\frac{d y}{d x}$
Put $x=a \sin \theta$

$$
\begin{aligned}
\Rightarrow y & =\ln (a \sin \theta+a \cos \theta)+\theta \\
\therefore \frac{d x}{d \theta} & =a \cos \theta \\
A \frac{d y}{d \theta} & =\frac{1}{a(\sin \theta+\cos \theta)} d(\cos \theta-\sin \theta)+1 \\
& =\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}+1 \\
\therefore \frac{d y}{d x} & =\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}+\frac{a \cos \theta}{a \cos \theta} \\
& =\frac{a \cos \theta(\cos \theta+\sin \theta)}{a} \\
& =\frac{2}{a\left(\frac{x}{a}+\sqrt{1-\frac{x^{2}}{a}}\right)} \\
& =\frac{2}{x+\sqrt{a^{2}-x^{2}}}
\end{aligned}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B. Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com
(27) If $y=\ln \left(\frac{1+x}{1-x}\right)^{1 / 4}-\frac{1}{2} \tan ^{-1}(x)$ find $\frac{d y}{d x}$.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(\ln \left(\frac{1+x}{1-x}\right)^{\frac{1}{4}}\right)-\frac{1}{2} \frac{d}{d x} \tan ^{-1}(x) \\
& =\frac{1}{4} \frac{d}{d x}(\ln (1+x)-\ln (1-x)) \\
& -\frac{1}{2} \frac{1}{1+x^{2}} \\
& =\frac{1}{4}\left(\frac{1}{1+x}-\frac{(-1)}{1-x}\right)-\frac{1}{2\left(1+x^{2}\right)} \\
& =\frac{1}{4}\left(\frac{1-x+1+x}{1-x^{2}}\right)-\frac{1}{2\left(1+x^{2}\right)} \\
& =\frac{1}{2\left(1-x^{2}\right)}-\frac{1}{2\left(1+x^{2}\right)} \\
& =\frac{1}{2}\left\{\frac{1}{1-x^{2}}-\frac{1}{1+x^{2}}\right\} \\
& =\frac{1}{2}\left(\frac{1+x^{2}-1+x^{2}}{1-x^{4}}\right) \\
& =\frac{x^{2}}{1-x^{4}} \text { Ans }
\end{aligned}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com
(28) If $y=\ln \sqrt{\frac{1-\cos x}{1+\cos x}}+a^{x}$,
find $\frac{d y}{d x}$.

$$
\begin{aligned}
y & =\frac{1}{2} \ln \left(\frac{1-\cos x}{1+\cos x}\right)+a^{x} \\
& =\frac{1}{2} \ln \tan ^{2} \frac{x}{2}+a^{x} \\
& =\ln \left(\tan \frac{x}{2}\right)+a^{x} \\
\therefore \frac{d y}{d x} & =\frac{1}{\tan \frac{x}{2}} \sec ^{2}-x x^{2}+a^{x} \ln a \\
& =\frac{1}{2 \sin \frac{x}{2} \cos \frac{x}{2}}+a^{x} \ln a \\
& =\frac{1}{\sin x}+a^{x} \ln a \\
& =\operatorname{cosec} x+a^{x} \ln a
\end{aligned}
$$

Anes

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com
(29) If $y=\log _{\sin x} \sec x+10^{x}$, find

$$
\begin{aligned}
& \frac{\operatorname{ly}}{d x} \\
& y=\log _{\sin x} e+\log _{e} \sec x+10^{x^{2}} \\
&=\frac{\ln \sec x}{\ln \sin x}+10^{x^{2}} \\
& \therefore \frac{d y}{d x}=\frac{\ln \sin x \cdot \frac{1}{\sec x} \cdot \operatorname{sen} x \tan x-\ln \sec x \cdot \frac{\cos ^{x} x}{\sin x}}{(\ln \sin x)^{2}} \\
&+10^{x^{2}} \ln 10 \times 2 x
\end{aligned}
$$

$$
\begin{aligned}
&+10^{x} \ln 10 \times 2 x \\
&\ln \operatorname{sen} x) \\
&= \tan x \ln \sin 4-\cot x \ln \sec x \\
& 12
\end{aligned}
$$

$$
\frac{\ln \sin x)^{2}}{(\sin 4}
$$

$$
+10^{x^{2} \ln 10 \times 2 x}
$$

Ans
(30) If $y=2 x \tan ^{1} x-\ln \left(1+x^{2}\right)$ find $\frac{d y}{d x}$

$$
\begin{aligned}
& \text { find } \frac{d y}{d x} \\
& \frac{d y}{d x}=2\left\{\frac{x}{1+x^{2}}+\tan ^{1} x-1\right\}-\frac{1}{1+x^{2}} \times 2 x \\
&=\frac{2 x}{1+x^{2}}+2 \tan ^{1} x-\frac{2 x}{1+x^{2}} \\
&=2 \tan ^{1} x \text { Aus }
\end{aligned}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com
(31) If $y=\frac{1}{3} \ln \left(\frac{x+1}{\sqrt{x^{2}-x+1}}\right)+\frac{1}{\sqrt{3}} \tan ^{1}\left(\frac{2 x-1}{\sqrt{3}}\right)$ find $\frac{d y}{d x}$.

$$
\begin{aligned}
& y=\frac{1}{3}\left\{\ln (x+1)-\ln \left(\sqrt{x^{2}-x+1}\right)\right\} \\
& +\frac{1}{\sqrt{3}} \tan ^{1}\left(\frac{2 n-1}{\sqrt{3}}\right) \\
& =\frac{1}{3} \ln (x+1)-\frac{1}{6} \ln \left(x^{2}-x+\pi\right) \\
& +\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2 x-1}{\sqrt{3}}\right) \\
& \begin{aligned}
\therefore \frac{d y}{d x} & =\frac{1}{3(x+1)}-\frac{(2 x-1)}{6\left(x^{2}-x+1\right)} \\
& +\frac{1}{\sqrt{3}} \frac{1}{1+{\frac{(2 x-1)}{}{ }^{2}}_{3}^{d x}} \times \frac{1}{\sqrt{3}} \times 2
\end{aligned} \\
& =\frac{1}{3(x+1)}-\frac{2 x-1}{6\left(x^{2}-x+1\right)}+\frac{2}{\not 8} \times \frac{\beta}{\left(3+(2 x-1)^{2}\right)} \\
& =\frac{2 x^{2}-2 x+2-\left(2 x^{2}+2 x-x-1\right)}{6(x+1)\left(x^{2}-4+1\right)}+\frac{2}{3+4 x^{2}+1-4 x} \\
& =\frac{-3 x+3}{C(x+1)\left(x^{2}-x+1\right)}+\frac{2}{4 x^{2}-4 x+4}
\end{aligned}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B. Sc. Mathematics., St. Xavier's College Kolkata (First Class)

$$
\begin{aligned}
& =\frac{\beta(1-x)^{6}}{2(x+1)\left(x^{2}-x+1\right)}+\frac{1}{2\left(x^{2}-x+1\right)} \\
& =\frac{1}{2\left(x^{2}-x+1\right)}\left\{\frac{1-x}{(x+x)}+1\right\} \\
& =\frac{1}{2\left(x^{2}-x+1\right)} \times \frac{1-x+x+1}{(x+1)} \\
& =\frac{221}{2\left(x^{2}-x+1\right)(x+1)}
\end{aligned}
$$

2
(32) If $y=\sqrt{1+\sin x}+\sqrt{\frac{1-x^{2}}{1+x^{2}}}$

$$
\begin{aligned}
& \text { find } \frac{d y}{d x} \\
& \frac{d y}{d x}=\frac{1}{2 \sqrt{1+\sin x}} \cdot \cos x+\frac{1}{2 \sqrt{\frac{1-x^{2}}{1+x^{2}}}} \frac{d}{d x}\left(\frac{1-x^{2}}{1+x^{2}}\right)
\end{aligned}
$$

find $\frac{d y}{d x}$.

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B. Sc. Mathematics., St. Xavier's College Kolkata (First Class)

$$
\begin{aligned}
& =\frac{\cos x}{2 \sqrt{1+\sin x}}+\frac{1}{2} \sqrt{\frac{1+x^{2}}{1-x^{2}}} \frac{d}{d x}\left(\frac{1-x^{2}}{1+x^{2}}\right) \\
& =\frac{\cos x}{2 \sqrt{1+\sin x}}+\frac{1}{2 \sqrt{\frac{1+x^{2}}{1-x^{2}}}\left(\frac{\left(1+x^{2}\right) \times(-2 x)-\left(1-x^{2}\right) \times 2 x}{\left(1+x^{2}\right)^{2}}\right)} \\
& =\frac{\cos x}{2 \sqrt{1+\sin x}}+\frac{1}{2} \frac{\sqrt{1+x^{2}}}{\sqrt{1-x^{2}}} \times \frac{(-4 x)}{\left(1+x^{2}\right)^{2}} \\
& =\frac{\cos x}{2 \sqrt{1+\sin x}}-\frac{2 x}{\sqrt{1-x^{2}} \sqrt{1+x^{2}}\left(1+x^{2}\right)} \\
& =\frac{2 x}{2 \sqrt{1+\sin x}}-\frac{2 x^{2}}{\sqrt{1-x^{4}}\left(1+x^{2}\right)}
\end{aligned}
$$

Arg
(33) If $y=e^{x / y}$, the slow

Phat $\frac{d y}{d x}=\frac{y^{2}}{(y+x)}$

$$
y=e^{x / y}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Koikata (First Class)

$$
\begin{aligned}
& \Rightarrow \ln y=h e^{x / y} \\
& \Rightarrow \ln y=\frac{x}{y} \\
& \therefore \frac{1}{y} \frac{d y}{d x}=\frac{y \cdot 1-x \frac{d y}{d x}}{y^{2}} \\
& \Rightarrow y \frac{d y}{d x}=y-x \frac{d y}{d x} \\
& \Rightarrow(y+x) \frac{d y}{d x}=y \\
& \Rightarrow \frac{d y}{d x}=\frac{y}{y+x} \text { hand }
\end{aligned}
$$

(34) I $y=e^{y / x}$, then glow

$$
\frac{d y}{d x}=\frac{y^{2}}{x(y-x)}
$$

Same as 33.

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com
(35) If $y \sqrt{1+x^{2}}=x$, the show

That

$$
x^{3} \frac{d y}{d x}=y^{3}
$$

Given, $y \sqrt{1+x^{2}}=x$

$$
\begin{aligned}
& \Rightarrow y^{2}\left(1+x^{2}\right)=x^{2} \\
& \therefore \frac{d}{d x}\left(y^{2}\left(1+x^{2}\right)\right)=2 x \\
& \Rightarrow\left(1+x^{2}\right) 2 y \frac{d y}{d x}+y^{2} \times 2 x=2 x \\
& \Rightarrow y\left(1+x^{2}\right) \frac{d y}{d x}=x\left(1-y^{2}\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{x\left(1-y^{2}\right)}{y\left(1+x^{2}\right)} \\
& \Rightarrow x^{3} \frac{d y}{d x}=\frac{x^{4}\left(1-y^{2}\right)}{y\left(1+x^{2}\right)} \\
&\left.\therefore x^{2}=y^{2}\left(1+x^{2}\right)\right)=\frac{y^{4}\left(1+x^{2}\right)^{2}\left(1-y^{2}\right)}{y\left(1+x^{2}\right)}
\end{aligned}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class)
E-mail maths.programming@gmail.com / prime.maths@hotmail.com

$$
\begin{aligned}
\Rightarrow \frac{d y}{d x} & =y^{3}\left(1+x^{2}\right)\left(1-y^{2}\right) \\
& =y^{3}\left(1+x^{2}-y^{2}-x^{2} y^{2}\right) \\
& =y^{3}\left(1+x^{2}-\left(x^{2} y^{2}+y^{2}\right)\right) \\
& =y^{3}\left(1+x^{2}-x^{2}\right) \because y^{2}+y^{2} x^{2}=x^{2} \\
& =y^{3} \quad \text { Pruy }
\end{aligned}
$$

$$
\frac{d y}{d x}=\frac{(\ln (e y))^{2}}{\ln y}
$$

$$
y^{x}=e^{y}
$$

$$
\begin{aligned}
& \Rightarrow x \ln y=(y-x)^{\text {he }} \\
& \therefore \frac{d}{d x}(x \ln y)=\frac{d}{d x}(y-x) \\
& \Rightarrow \frac{x}{y} \frac{d y}{d x}+\ln y=\frac{d y}{d x}-1 \\
& \Rightarrow \frac{x-y}{y} \frac{d y}{d x}=-(1+h y)
\end{aligned}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class)
B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\frac{y(1+\ln y)}{y-x} \\
&=\frac{y(\ln e+\ln y)}{\frac{x \ln y}{h e}} \\
&\left(\because y-x^{2} \frac{x^{\ln y} \ln e}{\ln }\right. \\
&=\frac{y(\ln e y) \times \ln e}{\lambda \ln y} \\
&
\end{aligned}
$$

Note $y-x=a \frac{\ln y}{h e}$

$$
\begin{aligned}
& \Rightarrow \frac{y}{x}-1=\frac{b y}{b e} \\
& \Rightarrow \frac{y}{a}=\frac{\ln y+\ln e}{b e} \\
& =\frac{\ln (e y)}{h e} \\
& \therefore \frac{d y}{d x}=\frac{\ln (e y) \cdot \ln (e y) x \ln }{\operatorname{loc}+\ln y} \\
& =\frac{(\ln (x y))^{2}}{\ln y} \text { arg }
\end{aligned}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com
(37) If $y=\frac{1+\sin \theta+\cos \theta}{1+\sin \theta-\cos \theta}$, then show that $\frac{d y}{f \theta}+\frac{1}{1-\cos \theta}=0$.

$$
\begin{aligned}
y= & \frac{1+\cos \theta+\sin \theta}{1-\cos \theta+\sin \theta} \\
& =\frac{2 \cos ^{2} \theta / 2+2 \sin \theta / 2 \cos \theta / 2}{2 \sin ^{2} \theta / 2+2 \sin \theta / 2 \cos \theta / 2} \\
& =\frac{2 \cos \theta / 2(\cos \theta / 2+\sin \theta / 2)}{2 \sin \theta / 2(\sin \theta / 2+\cos \theta / 2)} \\
\therefore \frac{\cot \theta / 2}{d \theta} & =-\frac{1}{2} \operatorname{cosec}{ }^{2} \theta / 2
\end{aligned}=\frac{-1}{2 \sin ^{2} \theta / 2}
$$

Vinod Singh M.Sc. Pure Mathematics., Calcutta University (First Class) B.Sc. Mathematics., St. Xavier's College Kolkata (First Class)

E-mail maths.programming@gmail.com / prime.maths@hotmail.com
(38) If $\tan y=\frac{\tan x+\sec x-1}{\tan x-\sec x+1}$,

Ran show that $\frac{d y}{d x}=1 / 2$

$$
\begin{aligned}
& \tan y=\frac{\frac{\sin x}{\cos x}+\frac{1}{\cos x}-1}{\frac{\sin x}{\cos x}-\frac{1}{\cos x}+1} \\
& =\frac{\sin x+1-\cos ^{n} x}{\sin x-1+\cos x} \\
& =\frac{2 \sin x / 2 \cos x / 2+2 \sin ^{2} x / 2}{2 \sin x / 2 \cos x / 2-2 \sin ^{2} x / 2} \\
& 2 \frac{\cos x / 2+\sin x / 2}{\cos x / 2-\sin x / 2} \\
& =\frac{1+\tan x / 2}{1-\tan x / 2} \\
& =\tan \left(\frac{\pi}{4}+\frac{x}{2}\right) \\
& \begin{aligned}
\Rightarrow y & =\tan ^{1}\left(\tan \left(\frac{\pi}{4}+\frac{n}{2}\right)\right. \\
& =\pi+\frac{x}{4}
\end{aligned} \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{2}
\end{aligned}
$$

