Area Under the Curve

1. Area of the region bounded by the curve $y=e^{x}$ and the lines $x=0$ and $y=e$ is
a) $e-1$
b) $\int_{1}^{e} \log (e+1-y) d y$
c) $e-\int_{0}^{1} e^{x} d x$
d) $\int_{0}^{e} \log y d y$
2. Sketch the region bounded by the curves $y=x^{2}$ and $y=\frac{2}{1+x^{2}}$. Find its area. Ans: $\pi-\frac{2}{3}$
3. Sketch the region bounded by the curves $y=\sqrt{5-x^{2}}$ and $y=|x-1|$ and find its area. Ans: $\frac{5 \pi}{4}-\frac{1}{2}$
4. Find the area bounded by the x-axis, part of the curve $y=\left(1+\frac{8}{x^{2}}\right)$ and the ordinates $x=2$ and $x=4$. Ans: 4
5. Show that the area bounded by the curve $y=2 x-x^{2}$ and the straight line $y=-x$ is $\frac{9}{2}$ sq.unit
6. Find the area bounded by the curves $y=x-1$ and $(y-1)^{2}=4(x+1)$. Ans: $\frac{64}{3}$ sq.unit
7. Find the area enclosed by the parabola $y^{2}=2 x$ and the two tangents drawn at the points $(2,2)$ and $(2,-2)$.
8. Find the area enclosed by the curve $|x|+|y|=1$.
9. Find the area enclosed between the curves $y=e^{-x}, y=\log _{e}(x+e)$ and the x axis. Ans: 2 sq.units
10. Find the area bounded by the curves $|x|+|y|=1$ and $y=|x|$.

Author-Vinod Singh

Education : M.Sc Pure Mathematics'09,(Calcutta University) First Class.
B.Sc Mathematics Honours'07,(St. Xavier's kolkata) First Class.

Special interest in Algebra, Algebraic and Analytical Number Theory, Cryptography, Algebraic Topology and Geometry.
http://kolkatamaths.yolasite.com
http://facebook.com/kolkatamaths
Best of luck!
Call us on +91-9038126497
Mail-maths.kolkata@gmail.com/maths.vinu@gmail.com
No part of this publication may be reproduced, stored or transmitted in any form or by any means - electronic, mechanical, photocopying, recording or otherwise - without written permission from the Author

